Reconstructing the Younger Dryas ice dammed lake in the Baltic Basin: Bathymetry, area and volume

Martin Jakobssona,*, Svante Björckb, Göran Almc, Thomas Andréna, Greger Lindebergd, Nils-Olof Svenssonb

a Department of Geology and Geochemistry, Stockholm University, Sweden
b Department of Geology, Quaternary Sciences, Lund University, Sweden
c Department of Physical Geography and Quaternary Geology, Stockholm University, Sweden
d Swedish Geological Survey, Uppsala, Sweden

Received 18 August 2006; received in revised form 12 January 2007; accepted 19 January 2007
Available online 6 February 2007

Abstract

A digital 3D-reconstruction of the Baltic Ice Lake’s (BIL) configuration during the termination of the Younger Dryas cold phase (ca. 11700 cal. yr BP) was compiled using a combined bathymetric–topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The bathymetric–topographic DTM, assembled from publicly available data sets, has a resolution of 500×500 m on Lambert Azimuthal Equal Area projection allowing area and volume calculations of the BIL to be made with an unprecedented accuracy. When the damming Scandinavian ice sheet margin eventually retreated north of Mount Billingen, the high point in terrain of Southern central Sweden bordering to lower terrain further to the north, the BIL was catastrophically drained resulting in a 25 m drop of the lake level. With our digital reconstruction, we estimate that approximately 7800 km3 of water drained during this event and that the ice dammed lake area was reduced by ca. 18%. Building on previous results suggesting drainage over 1 to 2 years, our lake volume calculations imply that the freshwater flux to the contemporaneous sea in the west was between about 0.12 and 0.25 Sv. The BIL reconstruction provides new detailed information on the paleogeography in the area of southern Scandinavia, both before and after the drainage event, with implications for interpretations of geological records concerning the post-glacial environmental development.

© 2007 Elsevier B.V. All rights reserved.

Keywords: ice dammed lakes; paleotopography; paleobathymetry; Younger Dryas; Baltic Sea; isostasy

1. Introduction

Ice dammed lakes comprise key components of the glacial environment and have been shown to influence the regional climate due to a summer cooling effect and modification of precipitation (Hostetler et al., 2000; Krinner et al., 2005). Furthermore, geological records witness large influxes of cold freshwater to the oceans attributed to catastrophic drainages of ice dammed lakes.
Such outbursts of cold water into the North Atlantic during the last deglaciation have been proposed to dramatically changing climate by impacting the North Atlantic deep water formation and causing significant cooling events (e.g. Björck et al., 1996; Barber et al., 1999; Teller et al., 2002). The potential importance of ice dammed lakes for the environmental evolution from glacial to inter-glacial conditions has resulted in an increasing interest from the modelling community to include these lakes in their models. However, the first step towards incorporating pro-glacial lakes into climate and ocean circulation modelling or hydraulic experiments is to reconstruct their spatial extents and accurately determine lake properties such as bathymetry, volume and hypsometry.

Together with some of the most well-known ice dammed lakes such as Glacial Lake Missoula (e.g. Baker and Bunker, 1985) and Lake Agassiz (e.g. Teller, 1987), the Baltic Ice Lake (BIL) is probably among the most studied. The knowledge of an ice dammed lake in the Baltic Basin during the last deglaciation is now more than 100 years old; it was first mentioned in the literature by the Swedish geologist Henrik Munthe (1902). Key to our present understanding of the BIL is the initial geological mapping of the region in south central Sweden where the lake finally drained at the end of the late-glacial period (Lunqvist, 1921; Lundqvist, 1931), at the termination of the Younger Dryas cold phase. This final drainage occurred when the damming Scandinavian ice sheet retreated to lower terrain north of Mount Billingen, the mountain that acted as the constraint for the lake extension. From studies of clay varves and shoreline displacements, this final drainage has been proposed as a more or less catastrophic outburst resulting in a lake lowering of ca. 25 m (Björck and Digerfeldt, 1984, 1989; Andrén et al., 2002), although a less dramatic drainage scenario taking place over several decades has also been advocated (Strömberg, 1992). However, recently the existence of the BIL was questioned by Påssé and Andersson (2005) who, based on a mathematical shoreline displacement model, argue that the lake surface was at sea level during the end of the Younger Dryas implying that an outburst never took place as there was no lake damming.

Studies of the BIL have resulted in numerous publications (see review by Björck, 1995a), and the accumulated field observations related to the lake’s final stage during the last deglaciation has grown into a

Fig. 1. Data sources used to compile the combined bathymetric–topographic Digital Terrain Model (DTM).
valuable database maintained at Quaternary Sciences at Lund University (Svensson, unpublished). Using the paleoshoreline information from this database, we have compiled a digital 3D-reconstruction of the final stage of the ice dammed lake in the Baltic Basin dated to the very end of the Younger Dryas cold phase (ca. 11 700 cal. yr. BP, Björck et al., 1996; Andrén et al., 2002). In addition to paleoshoreline data, our lake reconstruction builds on a combined bathymetric–topographic Digital Terrain Model (DTM) specifically constructed for this study, Scandinavian ice sheet limits (Lundqvist and Wohlfarth, 2001), and Baltic Sea Holocene bottom sediment thickness information assembled within this study. The BIL model was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake’s surface through the shoreline database.

Our reconstruction clearly shows that there was an ice dammed lake in the Baltic Basin during the end of the Younger Dryas and, thus, no support is provided for the hypothesis of a lake surface concomitant with the sea level at this time as proposed by Pässe and Andersson (2005). Furthermore, our reconstruction allows us to estimate bathymetry and calculate lake volume and hypsometry both before and after the drainage that resulted in a ca. 25 m drop in lake level. The substantially higher resolution of our BIL reconstruction compared to previous compiled maps makes it possible to view the paleogeography of the region from a new perspective and assess the environmental impact from the final drainage scenario.

2. Materials and methods

2.1. A bathymetric–topographic model for the Baltic region

The input data used for the compilation of our combined bathymetric–topographic DTM were derived from existing DTMs with large variations in resolution (Fig. 1; Table 1). Our combined model has a grid cell size resolution of 500 × 500 m on a Lambert Azimuthal Equal Area projection ($\lambda_0 = 20^\circ$E, $\phi_0 = 60^\circ$N). This resolution is high enough to capture the main characteristics of the BIL for the purposes of our study. The horizontal datum is WGS84 and the vertical datum is Mean Sea Level. All input data had the vertical datum assigned to Mean Sea Level implying that no vertical datum conversions were required before data merging. The bathymetric data sets together with GTOPO30 and SRTM of the topographic data were treated to be referenced to the WGS84 geodetic horizontal datum following the accompanying data descriptions. The Swedish elevation data is registered in the National Grid (RT 90 2.5 g West), which has a known relation to the WGS84 datum and was, thus, properly transformed using a seven parameter model (translation (3), rotation (3) and scaling (1)).

All bathymetric data points from the individual DTMs were imported to a Microsoft Access™ database configured for Intergraph’s GIS software Geomedia Professional™. Merging of the bathymetry was performed through spatial queries following the principle

<table>
<thead>
<tr>
<th>Dataset Description</th>
<th>DTM resolution</th>
<th>Original projection, horizontal and vertical datum</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography of Sweden from the Swedish cadastral service (LMV)</td>
<td>50 × 50 m</td>
<td>Gauss, RT 90 2.5 g West, mean sea level</td>
<td>LMV: www.lantmateriet.com</td>
</tr>
<tr>
<td>Global topography from Shuttle Radar Topography Mission (SRTM)</td>
<td>3 × 3 s</td>
<td>Platte Carre (unprojected), WGS 84, mean sea level</td>
<td>U.S. Geological Survey’s National Center for Earth Resources Observation and Science (EROS): http://srtm.csi.cgiar.org</td>
</tr>
<tr>
<td>Bathymetry around Bornholm from the Royal Danish Administration of Navigation and Hydrography (RDANH)</td>
<td>200 × 200 m</td>
<td>UTM (Zone 33), WGS 84, mean sea level</td>
<td>RDANH, courtesy of John Woodward</td>
</tr>
<tr>
<td>Bathymetry of the Baltic Sea by the Baltic Sea Research Institute, Warnemünde (IOW)</td>
<td>1° longitude × 0.5° latitude</td>
<td>Platte Carre, WGS 84, mean sea level</td>
<td>Seifert et al., 2001: http://www.io-warnemuende.de</td>
</tr>
<tr>
<td>Cont. IOW</td>
<td>2° longitude × 1° latitude</td>
<td>Platte Carre, WGS 84, mean sea level</td>
<td>Seifert et al., 2001: http://www.io-warnemuende.de</td>
</tr>
<tr>
<td>Global bathymetry from ETOPO2</td>
<td>2° longitude × 2° latitude</td>
<td>Platte Carre, WGS 84, mean sea level</td>
<td>National Geophysical Data Center (NGDC): http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html</td>
</tr>
</tbody>
</table>
that higher resolution data override lower resolution. The topography was treated separately due to the large amount of data; in fact too large to efficiently use Access™ as a database. Instead the raster software Erdas Imagine™ was used to merge all the topographic data according to the same principle as was applied for the bathymetry, i.e., higher resolution data override lower resolution. In order to complete the combined DTM at a grid cell size resolution of 500 × 500 m both subsampling and interpolation had to be implemented on the source data. Bathymetry and topography were treated separately. Subsampling of the higher resolution topographic data sets (Swedish national elevation data and SRTM) was performed using a near neighbour algorithm. This algorithm was also used to interpolate additional values in the region where only the GTOP30 topography existed, which is coarser than 500 × 500 m. The interpolation of the bathymetry used a minimum curvature surface spline in tension algorithm (tension set to 0.35) as implemented in the Generic Mapping Tools (GMT) software (Wessel and Smith, 1991) and the coastline was constrained using the World Vector Shoreline Plus (Soluri and Woodson, 1990). Finally, bathymetry and topography were merged and since the topography must be considered of generally higher quality, the topography was set to govern the coastline. The area of interest for this work of the final combined bathymetric–topographic DTM is shown as a shaded relief in Fig. 2.

2.2. BIL shoreline database

Over the years, Swedish paleoshoreline data have been accumulated in a database at the Department of Quaternary Sciences, Lund University (Svensson, unpublished). The shoreline database was derived from a plethora of studies and contains information on where (latitude/longitude) and when (years BP) the Baltic Sea/Lake level was in relation to today’s sea level. For example, this information has been acquired through shore displacement studies or dating of raised beaches. Almost exclusively, the age control has been achieved by 14C dating organic material. Table 2 lists the shoreline information retrieved from the Lund database to be used in this study for the reconstruction of the BIL ca. 11700 cal. yr BP. Calendar year calibration of the 14C ages (in this work referred to as cal. yr. BP) in the Lund University database has been to a large extent facilitated by the southern Sweden time-synchronous Younger Dryas–Preboreal transition (YDP) pollen zone (Björck...
Table 2
Shoreline constraining points used in this study for reconstructing the surface of the BIL 11600 calendar years BP. Records 1–101 represent actual field sites retrieved from the shoreline database maintained at Quaternary Sciences, Lund University. The last records (102–128) have been extrapolated and inferred during this work (see Materials and methods)

<table>
<thead>
<tr>
<th>Record</th>
<th>Site</th>
<th>Author</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Meters above present sea level</th>
<th>Estimated vertical error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slättmossen Blekinge</td>
<td>Berglund (1966)</td>
<td>56.1507</td>
<td>15.8372</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>Norrsjön</td>
<td>Björck (1979)</td>
<td>56.2316</td>
<td>15.0729</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Paddegölen</td>
<td>Björck (1979)</td>
<td>56.1799</td>
<td>15.2197</td>
<td>28</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.3439</td>
<td>28.3832</td>
<td>104</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2791</td>
<td>28.9619</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2729</td>
<td>28.0711</td>
<td>108</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2076</td>
<td>28.7617</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2461</td>
<td>27.9662</td>
<td>107</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2330</td>
<td>27.8102</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.4184</td>
<td>25.5175</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2005</td>
<td>27.6659</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1201</td>
<td>28.5372</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.0952</td>
<td>28.3203</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.2493</td>
<td>25.3522</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1927</td>
<td>25.1288</td>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1485</td>
<td>25.6209</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.0505</td>
<td>26.7670</td>
<td>124</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1173</td>
<td>25.7981</td>
<td>151</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1050</td>
<td>25.9625</td>
<td>141</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.1142</td>
<td>24.9560</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.9091</td>
<td>26.9412</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.0140</td>
<td>25.3553</td>
<td>146</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.9920</td>
<td>25.5348</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.9412</td>
<td>25.8539</td>
<td>133</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>61.0189</td>
<td>24.7608</td>
<td>161</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.9399</td>
<td>24.5899</td>
<td>159</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.7997</td>
<td>24.3849</td>
<td>153</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.6964</td>
<td>24.8546</td>
<td>140</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.7334</td>
<td>24.2933</td>
<td>152</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.6847</td>
<td>24.2067</td>
<td>151</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Finland</td>
<td>Donner (1978)</td>
<td>60.5105</td>
<td>23.9600</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Brandstorp</td>
<td>Nilsson (1937)</td>
<td>58.0921</td>
<td>14.1973</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Brevik</td>
<td>Nilsson (1937)</td>
<td>58.4356</td>
<td>14.3871</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Flädesmon</td>
<td>Nilsson (1937)</td>
<td>58.5935</td>
<td>14.9827</td>
<td>155</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Hjo, south of</td>
<td>Nilsson (1937)</td>
<td>58.2635</td>
<td>14.2577</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Karlsborg NW</td>
<td>Nilsson (1937)</td>
<td>58.6604</td>
<td>14.4125</td>
<td>156</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Karlsborg WsW</td>
<td>Nilsson (1937)</td>
<td>58.4974</td>
<td>14.2989</td>
<td>149</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Omberg</td>
<td>Nilsson (1937)</td>
<td>58.3125</td>
<td>14.6480</td>
<td>139</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Billingen</td>
<td>Strömberg (1977)</td>
<td>58.4450</td>
<td>13.7529</td>
<td>150</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Allekviaburgen</td>
<td>Svensson (1989)</td>
<td>57.6172</td>
<td>18.4235</td>
<td>69</td>
<td>0.6</td>
</tr>
<tr>
<td>41</td>
<td>Arlebrunn</td>
<td>Svensson (1989)</td>
<td>58.5377</td>
<td>15.7636</td>
<td>152</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4089</td>
<td>27.3973</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4270</td>
<td>27.4053</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.3985</td>
<td>27.5199</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4808</td>
<td>26.3553</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.3539</td>
<td>27.8064</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4985</td>
<td>26.0227</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4388</td>
<td>26.7510</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4415</td>
<td>26.5029</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.3609</td>
<td>26.9208</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4569</td>
<td>25.7435</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.4045</td>
<td>25.4797</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.1454</td>
<td>24.6849</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.1537</td>
<td>24.5640</td>
<td>64</td>
<td>1</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Record</th>
<th>Site</th>
<th>Author</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Meter above present sea level</th>
<th>Estimated vertical error</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>59.1058</td>
<td>24.6043</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>58.9467</td>
<td>24.6858</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>58.7166</td>
<td>24.7482</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>58.5913</td>
<td>25.2349</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>58.4318</td>
<td>25.1919</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>58.0559</td>
<td>24.5131</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.6234</td>
<td>22.2582</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.5943</td>
<td>22.4710</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.4716</td>
<td>22.2313</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.3856</td>
<td>22.6664</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.3782</td>
<td>22.2982</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.0626</td>
<td>23.1191</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>57.0101</td>
<td>21.5407</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>56.8071</td>
<td>24.3017</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>56.7138</td>
<td>21.1191</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>56.5508</td>
<td>21.1451</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>56.4847</td>
<td>21.2171</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Baltic republics</td>
<td>Svensson (1989)</td>
<td>56.2274</td>
<td>21.1322</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>Borg</td>
<td>Svensson (1989)</td>
<td>56.6653</td>
<td>16.6030</td>
<td>36</td>
<td>0.6</td>
</tr>
<tr>
<td>74</td>
<td>Borgholm A</td>
<td>Svensson (1989)</td>
<td>56.8517</td>
<td>16.6336</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>Borgholm B</td>
<td>Svensson (1989)</td>
<td>56.8513</td>
<td>16.6336</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>76</td>
<td>Fanketorp</td>
<td>Svensson (1989)</td>
<td>56.9031</td>
<td>16.2326</td>
<td>47</td>
<td>0.6</td>
</tr>
<tr>
<td>77</td>
<td>Getterum A</td>
<td>Svensson (1989)</td>
<td>57.5676</td>
<td>16.3409</td>
<td>78</td>
<td>0.6</td>
</tr>
<tr>
<td>78</td>
<td>Getterum B</td>
<td>Svensson (1989)</td>
<td>57.5675</td>
<td>16.3409</td>
<td>77</td>
<td>0.6</td>
</tr>
<tr>
<td>79</td>
<td>Hajgdärke</td>
<td>Svensson (1989)</td>
<td>57.3698</td>
<td>18.3776</td>
<td>58</td>
<td>0.8</td>
</tr>
<tr>
<td>80</td>
<td>Hanö I</td>
<td>Svensson (1989)</td>
<td>56.0140</td>
<td>14.8455</td>
<td>17</td>
<td>1.5</td>
</tr>
<tr>
<td>81</td>
<td>Hejnum Hällar</td>
<td>Svensson (1989)</td>
<td>57.6832</td>
<td>18.6572</td>
<td>70</td>
<td>0.6</td>
</tr>
<tr>
<td>82</td>
<td>Högsnum</td>
<td>Svensson (1989)</td>
<td>56.767</td>
<td>16.6261</td>
<td>40</td>
<td>0.6</td>
</tr>
<tr>
<td>83</td>
<td>Leningrad area</td>
<td>Svensson (1989)</td>
<td>60.9410</td>
<td>30.2815</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Leningrad area</td>
<td>Svensson (1989)</td>
<td>60.7158</td>
<td>29.9172</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Leningrad area</td>
<td>Svensson (1989)</td>
<td>60.3407</td>
<td>29.2369</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Leningrad area</td>
<td>Svensson (1989)</td>
<td>59.8058</td>
<td>28.4938</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Lilla Karlsö</td>
<td>Svensson (1989)</td>
<td>57.3152</td>
<td>18.0608</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Listershuvud</td>
<td>Svensson (1989)</td>
<td>56.0313</td>
<td>14.7745</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>Lojst haid</td>
<td>Svensson (1989)</td>
<td>57.3207</td>
<td>18.3468</td>
<td>56</td>
<td>0.8</td>
</tr>
<tr>
<td>90</td>
<td>Maglehem</td>
<td>Svensson (1989)</td>
<td>55.7883</td>
<td>14.1838</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>Pilekulla</td>
<td>Svensson (1989)</td>
<td>56.3534</td>
<td>16.4533</td>
<td>28</td>
<td>0.6</td>
</tr>
<tr>
<td>92</td>
<td>Ramshult A</td>
<td>Svensson (1989)</td>
<td>57.0740</td>
<td>16.2761</td>
<td>53</td>
<td>0.5</td>
</tr>
<tr>
<td>93</td>
<td>Ramshult B</td>
<td>Svensson (1989)</td>
<td>57.0739</td>
<td>16.2777</td>
<td>53</td>
<td>0.5</td>
</tr>
<tr>
<td>94</td>
<td>Ramshult C</td>
<td>Svensson (1989)</td>
<td>57.0780</td>
<td>16.2821</td>
<td>54</td>
<td>0.6</td>
</tr>
<tr>
<td>95</td>
<td>Syserum</td>
<td>Svensson (1989)</td>
<td>57.4854</td>
<td>16.2727</td>
<td>73</td>
<td>0.6</td>
</tr>
<tr>
<td>96</td>
<td>Södremo</td>
<td>Svensson (1989)</td>
<td>56.5985</td>
<td>16.1233</td>
<td>36</td>
<td>1.5</td>
</tr>
<tr>
<td>97</td>
<td>Torsburgen</td>
<td>Svensson (1989)</td>
<td>57.4066</td>
<td>18.7273</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>Västerbackar</td>
<td>Svensson (1989)</td>
<td>56.9368</td>
<td>18.1661</td>
<td>42</td>
<td>0.6</td>
</tr>
<tr>
<td>99</td>
<td>Århu</td>
<td>Svensson (1989)</td>
<td>57.2734</td>
<td>16.3103</td>
<td>62</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>Faxe Bugt</td>
<td>Jensen (1995)</td>
<td>55.1667</td>
<td>12.3333</td>
<td>−13</td>
<td>Unknown</td>
</tr>
<tr>
<td>101</td>
<td>Mecklenburg Bugt</td>
<td>Jensen et al. (1997)</td>
<td>54.3333</td>
<td>12.0000</td>
<td>−20</td>
<td>Unknown</td>
</tr>
<tr>
<td>102</td>
<td>Extrapolated from Maglehem, this work</td>
<td>This work</td>
<td>55.7734</td>
<td>21.5223</td>
<td>10</td>
<td>Unknown</td>
</tr>
<tr>
<td>103</td>
<td>Extrapolated from Maglehem, this work</td>
<td>This work</td>
<td>56.5421</td>
<td>24.3119</td>
<td>10</td>
<td>Unknown</td>
</tr>
<tr>
<td>104</td>
<td>Extrapolated from Maglehem, this work</td>
<td>This work</td>
<td>55.7318</td>
<td>15.3984</td>
<td>10</td>
<td>Unknown</td>
</tr>
<tr>
<td>105</td>
<td>Extrapolated from Maglehem, this work</td>
<td>This work</td>
<td>55.6724</td>
<td>16.5214</td>
<td>10</td>
<td>Unknown</td>
</tr>
<tr>
<td>106</td>
<td>Extrapolated from Maglehem, this work</td>
<td>This work</td>
<td>55.5972</td>
<td>18.1970</td>
<td>10</td>
<td>Unknown</td>
</tr>
<tr>
<td>107</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>55.6224</td>
<td>12.6764</td>
<td>−3</td>
<td>Unknown</td>
</tr>
<tr>
<td>108</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>55.6084</td>
<td>12.9303</td>
<td>−3</td>
<td>Unknown</td>
</tr>
<tr>
<td>109</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>55.5825</td>
<td>13.6301</td>
<td>−3</td>
<td>Unknown</td>
</tr>
<tr>
<td>110</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>55.5338</td>
<td>14.4178</td>
<td>−3</td>
<td>Unknown</td>
</tr>
<tr>
<td>111</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>55.0483</td>
<td>14.2805</td>
<td>−13</td>
<td>Unknown</td>
</tr>
<tr>
<td>112</td>
<td>Extrapolated, this work</td>
<td>This work</td>
<td>54.9929</td>
<td>15.4140</td>
<td>−13</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
et al., 1996). It should be noted that the new time scale of the NGRIP ice core assigns a revised age of 11,653 cal. yr. BP to the YDP (Rasmussen et al., 2006).

2.3. Reconstruction of the Younger Dryas BIL lake surface

As a result of the differential uplift (isostatic rebound) of Scandinavia after the last deglaciation, the Younger Dryas ice dammed lake surface is not a simple plane at a given level. Therefore, the paleolake’s surface must be reconstructed using the shoreline database at hand (Table 2) and some interpolation between this information. The procedure for reconstructing the BIL can be summarized in the following steps:

1. Interpolate the lake surface from the shoreline database using a mathematical algorithm.

2. Intersect the interpolated lake surface with the combined bathymetric–topographic DTM and visualize the result in 3D together with the original shoreline data and the Younger Dryas ice limit.

3. Iterate 1 and 2 using different mathematical algorithms for the interpolation of the lake surface. The iteration results are shown in Fig. 3A–C.

In step 2, all the objects, i.e., the computed lake surface, DTM, ice limit, shoreline database, were merged for analysis in the dynamic 3D-visualization environment of the Fledermaus™ software. During the iteration process, it was found that some manually interpolated “steering” points for the lake surface in the south had to be entered in order to constrain the lake surface far from the source data. These points are shown in Table 2 and Fig. 2. Once the lake surface is computed, the BIL and surrounding area can be reconstructed by subtracting the lake surface’s z-values from the topographic–bathymetric DTM. In other words, an isostatic readjustment to ca. 11,700 cal. yr. BP is performed using the calculated BIL surface.

2.4. Baltic Sea bottom sediments compilation

The accumulation of Holocene sediments in the Baltic Basin was compiled through assembling information from available sediment distribution maps (Sjöberg, 1996) and information retrieved from the Swedish Geological Survey’s mapping archives. A digital grid model containing thickness information was constructed at the resolution of 500 × 500 m on a Lambert Azimuthal Equal Area projection to be compatible with our bathymetric–topographic model for the Baltic region. This sediment thickness model was used to compensate the final BIL reconstruction for accumulated Holocene sediments. However, we cannot determine to which extent the non-organic part of the Holocene sediments is composed of reworked glacial deposits.

2.5. Area and volume calculations

These properties are estimated by simply calculating pixels of our digital reconstruction of the BIL on a Lambert Azimuthal Equal Area projection and summarizing the results. Each pixel has an area of 250,000 m² (500 × 500 m) and this value may be regarded as good approximation over the entire BIL due to the equal area projection, albeit with greater distortion with increasing distance from the central meridian (λ0=20°E) and standard parallel (φ0=60°N). In the area calculation, pixels with the value of 0 (the BIL’s shoreline) were
included to derive the area. The uncertainties of the area and volume calculations are largely dominated by the errors associated with our BIL reconstruction, which primarily is dependant on the used bathymetric–topographic DTM, the interpolated BIL waterplane and the location of the Younger Dryas ice sheet margin. All these components have associated errors with large spatial variations that depend on the source data. For example, the lack of shoreline observations in the Lund University database in the southern part of our study area (Fig. 2) implies gross extrapolations in this region. For this reason it is not straightforward to assign an uncertainty to the derived BIL area and volume without a comprehensive error modelling, which has not been included in this study.

3. Results

3.1. Lake surface reconstruction through a plane

A plane was fitted through the shoreline database by a least square linear regression (note that a plane fitted through our projected database in reality represents a slightly curved surface due to the curvature of the Earth’s surface). The result is described by:

\[
z(x, y) = -1.07 \times 10^{-4}x + 2.84 \times 10^{-4}y + 122.51
\]

(A)

where \(z\) is the interpolated lake surface height in relation to the present day sea level at the location \((x, y)\) given in
Lambert Azimuthal Equal Area coordinates \((\lambda_0 = 20^\circ \text{E}, \varphi_0 = 60^\circ \text{N})\). The fit between the calculated plane and the original database, including the inserted points in the south, reach a squared correlation coefficient \((R^2)\) of \(\approx 0.83\). It is clearly seen in Fig. 3A that the reconstructed BIL surface using a plane is not satisfactory in the southwest, the area of and around Denmark. This is simply related to the fact that the isostatic rebound history is here more complex and cannot be described by a simple plane.

3.2. Lake surface reconstruction through a quadratic trend surface

A quadratic polynomial trend surface was fitted to the shoreline database using the same approach as for the plane, i.e. by applying a least square regression through the shoreline data points. The result after the regression to the quadratic trend surface is described by:

\[
z(x, y) = -2.45 \times 10^{-4}x + 5.22 \times 10^{-4}y - 7.47 \times 10^{-11}x^2 + 3.79 \times 10^{-10}y^2 - 4.45 \times 10^{-10}xy + 167.05.
\]

This approach gives a much better match between the shoreline database and the calculated BIL surface compared to the linear plane (Fig. 3B versus A). The \(R^2\) coefficient increases from \(\approx 0.83\) to \(\approx 0.99\). Furthermore, Fig. 3B reveals that the Danish area is vastly improved. This shows that the isostatic rebound has followed more closely a quadratic function than a simple linear one. However, the function fails to fit the two supporting points in Öresund, which were added based on the knowledge that the Öresund Strait, with its threshold at approximately \(-7\) m, functioned as an outlet for the BIL during the later part of Younger Dryas, when its water level was finally dammed up \(25\) m above the contemporaneous sea level (Björck, 1995a). Even if it is only a matter of a few meters, the mismatch is clearly seen in the 3D-visualization of Fig. 3B. However, there are problems with mapping and establishing a paleoshoreline in the threshold region. The reason for this is the difficulty in estimating the water depth of the outlet since it is related to the amount of out-flowing water and bottom topography (paleobathymetry); the latter may have been significant altered by erosion in a later stage and water depth may have been several meters at the sill. The southernmost shoreline data point (Mecklenburg Bay, Jensen et al., 1997) is located at \(-20\) m. This data point explains why the BIL surface disappears into the present sea floor in this area. It emphasizes the importance of subtracting the Holocene sediment thickness in order to finally reconstruct the BIL during the latest part of Younger Dryas.

3.3. Lake surface reconstruction through a minimum curvature surface algorithm

A minimum curvature algorithm may be pictured as a linearly elastic plate, which is fitted through each of the data points; in our case the database of the final BIL Younger Dryas shoreline. The algorithm generates the smoothest possible surface while honouring the data points within a set maximum residual value. In the BIL reconstruction experiment, the maximum residual value was set to \(0.2\) m (see GMT settings for minimum curvature surface algorithm: Wessel and Smith, 1991). A common problem while applying a minimum curvature is that the computed surface in its attempts to be as smooth as possible bends up or down between data points in a clearly unrealistic fashion. This phenomenon is often referred to as an “over shoot” or “under shoot”. To avoid this artefact, the surface can be constrained by applying a tension factor between 0 and 1, where 0 is no tension and 1 is maximum tension. A maximum tension
will result in a surface where sharper breaks appear at the location of the data points. We found that the distribution and relationship between the BIL Younger Dryas shoreline data observations do not require a tension parameter.

The reconstructed BIL surface using minimum curvature to a large extent resembles the quadratic trend surface in front of the Younger Dryas ice margin in the central Baltic between the Swedish east coast and coasts of the Baltic countries (Fig. 3C). However, in the

Fig. 5. A) Bathymetry of the Younger Dryas BIL based on the lake reconstruction derived using a minimum curvature algorithm and the shoreline database in Table 2. The bathymetry has been compensated for accumulated Holocene sediments. The reconstructed bathymetry of the BIL in the area of Lake Ladoga should not be considered due to that no bathymetric data from this lake was included in our compilation of the combined bathymetric–topographic DTM. B) The Younger Dryas BIL after the drainage north of Mount Billingen that resulted in an approximately 25 m drop in lake level. C) Comparison between our lake reconstruction shown in A and the BIL shoreline compiled by Björck (1995a).
southernmost area of the shoreline database, particularly in Mecklenburg Bay and Öresund, the minimum curvature better honours the data points compared to the quadratic trend surface (Fig. 3B versus C). This is completely expected since the algorithm locally has no problem diverting from a larger trend and these areas obviously have experienced a Holocene isostatic rebound history that differs from the larger regional trend in the area of the Younger Dryas BIL shoreline database.

3.4. Volume and area calculations

The Younger Dryas BIL digital reconstruction based on the minimum curvature algorithm (Fig. 3C) was selected for volume and area calculations since it best fits the geological observations, i.e. the shoreline database and information on the lake’s threshold area in Öresund. The calculated BIL total area and volume are shown in Table 3 both with and without compensating for Holocene sediment accumulations. The reconstruction taking into account the accumulated Holocene sediments resulted in an approximately 1% larger lake volume than if these sediments were ignored. This figure may even be smaller considering the fact that the Holocene sediments to some extent consist of redeposited glacial sediments. Fig. 4 shows the hypsometric function for the BIL reconstruction compensated for the accumulated Holocene sediments. A map of the Younger Dryas BIL and its paleobathymetry is shown in Fig. 5A.

The Scandinavian ice sheet margin eventually retreated north of Mount Billingen and the Younger Dryas BIL was drained through this area, resulting in a 25 m drop of the lake level (e.g., Lunqvist, 1921; Björck, 1995a). The amount of water released during this event and the BIL area reduction can easily be calculated using our digital model (Table 3). Approximately 7800 km³ of water was drained and the BIL area was reduced by 61600 km², ca. 18%, when it turned into the next Baltic stage, the Yoldia Sea, as an effect of the drainage down to sea level (Fig. 5B).

4. Discussion

The recent questioning by Påsse and Andersson (2005) of a ponded BIL towards the end of the Younger Dryas cold phase warrants an initial discussion in the light of our new reconstruction. They propose that the Baltic’s surface was at the sea level during this time and, for that reason; the “Baltic Ice Sea” would be a more proper term than the “Baltic Ice Lake”. Indeed, if their proposition has any scientific significance, a great deal of field data will have to be reinterpreted and the Baltic geological history will have to be rewritten. For example, one obvious implication is that no sudden drainage affecting the Baltic’s level on a regional scale could have occurred at the northern tip of Mount Billingen since there was no large scale damming of water in the Baltic Basin according to their model.
From our reconstruction of the BIL, it is evident that the lake surface was located at an elevation of approximately 150 m above present sea level along the eastern side of Mount Billingen at the very end of Younger Dryas. The contemporaneous sea level on the western side reached a level located at ca. 125 m in the present day topography (Strömberg, 1977; Björck and Digerfeldt, 1986, 1989), see Fig. 6A. This gives an altitude difference of 25 m between the BIL surface and sea level, and once the ice margin retreated northward of Mount Billingen the outburst took place (Fig. 6B). The field evidences, e.g. anomalies in shorelines on the eastern side of Mount Billingen and changes in clay varve deposition in the Baltic Basin, pointing to an outburst and drop of about 25 m of the Baltic’s level (e.g. Lunqvist, 1921; Strömberg, 1977; Björck and Digerfeldt, 1984, 1986, 1989; Strömberg, 1992; Andrén et al., 2002) are instead attributed by Påssé and Andersson (2005) to a rapid regression caused by an extreme glacio-isostatic rebound. Furthermore, they propose that the deposits west of the northern tip of Mount Billingen interpreted to be caused by flowing water (Björck and Digerfeldt, 1984; Strömberg, 1992) were caused by the drainage of a much smaller ice dammed lake located between Mount Billingen and the mountains along the western side of Lake Vättern (Fig. 6A). This lake, Glacial Lake Tidan, was supposedly dammed to a level of 40 m above the contemporaneous sea level, which is 15 m higher than the level commonly proposed for the BIL. However, from our reconstruction it becomes evident that the passage to Lake Vättern to the east only was at 30 m above the sea level during the end of Younger Dryas, making it hard to understand how this damming to 40 m could have taken place at this time (Fig. 6A).

It should be emphasized that Påssé and Andersson (2005) try to mimic the glacio-isostatic rebound over time by constructing a mathematical model (a parameterized arctan function) derived from shore displacement curves, present isostatic uplift and their own field examinations of the lake’s tilting over time due to isostatic rebound. For the time interval at the end of the Younger Dryas, four field sites with shore level curves are included to derive their model. In fact, due to dating uncertainties they raise criticism against our type of reconstruction methods where many supposedly time

Fig. 6. A) The reconstruction of the area north of Mount Billingen based on a high-resolution (50×50 m) DTM available from the Swedish cadastral service (LMV). The minimum curvature BIL surface was used to compensate the 50×50 m DTM for the post-glacial isostatic rebound. The BIL level is shown with light gray shading and the contemporaneous 25 m lower sea is shown with a darker gray shading. The passage marked with an arrow would complicate the damming of the glacial lake Tidan to a level of 40 m above the sea level during the end of Younger Dryas as proposed by Påssé and Andersson (2005; see text for discussion). B) The Billingen area after the drainage causing a 25 m drop in the lake level.
synchronous shoreline observations are used for reconstructing a particular stage of a paleolake. However, our second experiment of fitting a quadratic trend surface through the shoreline database shows, on the contrary, how well all the widely distributed shoreline observations are spatially correlated ($R^2 \approx 0.99$; Fig. 3B). A spatial trend clearly exists in the shoreline database and if any dates would be significantly wrong one would expect outliers and local deviations from the fitted trend surface, in particular during times of extreme isostatic crustal movements, as being proposed for the end of the Younger Dryas. Moreover, it is well known that precise 14C dating around the YDP is complicated due to a 14C plateau causing large error bars for the calibrated ages (Reimer et al., 2004), but the onset of the so-called YDP pollen zone can be used as a time marker. This chronostratigraphic support has been widely used in the studies included in the Lund University shoreline database for the Younger Dryas, while Påssé and Andersson (2005) instead chose to derive another arctan function for 14C calibration and also question the 14C dating of the shorelines supporting the existence of BIL. Björck et al. (1996) have shown that the YDP pollen zone is synchronous within southern Sweden and also synchronous with the onset of the Preboreal warming in the Greenland Summit ice cores.

The dating of late-glacial events in the Baltic Sea basin is based on clay varve measurements and ages has been presented as traditional varve years related to the Swedish Time Scale (De Geer, 1940) or as clay varve years BP (Cato, 1987). By using the YDP as a fix point, Andrén et al. (2002) correlated the Swedish clay varve chronology from the central Baltic Sea with the GRIP ice core and, thus, converted the clay varve years into calendar years. The new revised age of 11 653 cal. yr BP for the YDP from the NGRIP chronology (Rasmussen et al., 2006) implies a slight revision of the previous calendar year conversion of clay varve years by Andrén et al. (2002). This revision is included in all ages presented below derived from clay varve studies.

The deglaciation model for the Billingen area by Strömberg (1994) places the ice sheet margin in contact with the northern tip of Mount Billingen at about 11 730 cal. yr BP. Approximately 100 years later, the ice sheet had retreated far enough to the north in order to open a connection between the BIL and the Kattegatt. Saarnisto and Saarinen (2001) propose from paleomagnetic and clay varve studies of sediment cores from Lake Onega, Russia, that the ice margin’s retreat from the second Salpausselkä end moraine in western Finland coincides with the BIL drainage. They date this retreat and, thus, the BIL drainage to 11 590±100 cal. yr BP. Furthermore, clay varve studies of sediment cores from central Baltic Sea date the final BIL drainage to 11 690±10 cal. yr BP (Andrén et al., 2002) thus pre-dating the YDP with 30 to 40 years. From this, it seems reasonable to assume that the final drainage of BIL predates the YDP with some tens of years (cf. Björck et al., 1996).

Our reconstruction of the BIL shoreline is fairly similar to the map compiled by Björck (1995a) for the same time interval, albeit, with some discrepancies in the northwest and in the south (Fig. 5C). A recent shoreline displacement study by Uscinowicz (2003) shows a more northerly located late Younger Dryas coast in some areas off Poland than our Fig. 5A. If this data includes the very last BIL shoreline, it suggests that future updates of the Lund database and our BIL reconstruction should include the source information from Uscinowicz (2003) for this area. However, the cost off Poland is very shallow implying that the computed volume in this present work will not be subject to significant changes due to small relative changes in this area.

With a computed area and volume of 349 400 km2 and 29 300 km3, respectively, the BIL is comparable in size to Lake Agassiz Upper Campbell level (9 400 14C yr. BP; Teller and Leverington, 2004), which was calculated by Leverington et al. (2000) to have an area of 263 000 km2 and a volume of 22 700 km3. This makes the BIL one of...
the larger known ice dammed lakes, albeit considerably smaller than the last stage of Lake Agassiz when it merged with Lake Ojibway at 8400 cal. yr. BP (area: 841 000 km²; volume 163 000 km³, Teller et al., 2002) or the Early and Mid Weichselian pro-glacial lakes in Northern Russia (see Mangerud et al., 2001). The BIL maximum depth was most probably more than 100 m deeper than the Baltic Sea today and located in the Landsort Deep, which is marked to 459 m on current hydrographic charts (Fig. 2). The deepening of the Landsort Deep during the end of Younger Dryas was mainly due to isostatic depression, although the exact figure must be considered uncertain due to lack of nearby located shoreline constraining points and accurate information on the amount of accumulated Holocene sediments (Fig. 2). A north–south profile comparing the bathymetry between the present Baltic Sea and the paleobathymetry of the BIL clearly shows that isostatic depression was progressively larger towards the north during the end of the Younger Dryas (Fig. 7A,B).

No southern terrestrial connections existed that directly could link the European continent with southern Sweden. However, once the ice margin reached north of Mount Billingen, this picture changed dramatically due to the 25 m lowering of the BIL level (Fig. 5B). A large land bridge emerged, which most likely played a similar role for faunal migration (Björck, 1995b) as the Bering land bridge did between the Eurasian and American continent (Hopkins et al., 1982). It is also noteworthy that the island of Bornholm became a peninsula for a considerable period of time due to the sudden lowering and it is known that large areas outside today’s shoreline were invaded by pine forests (Björck, 1995a).

Perhaps even more interesting than the total BIL volume and area is the amount of freshwater that was released during the drainage causing the 25 m drop in lake level. We calculate that this amounted to ca. 7800 km³, released during the drainage causing the 25 m drop in lake volume and area is the amount of freshwater that was invaded by pine forests (Björck, 1995a). It is known that large areas outside today’s shoreline were invaded by pine forests (Björck, 1995a).

Perhaps even more interesting than the total BIL volume and area is the amount of freshwater that was released during the drainage causing the 25 m drop in lake level. We calculate that this amounted to ca. 7800 km³, released during the drainage causing the 25 m drop in lake volume and area is the amount of freshwater that was invaded by pine forests (Björck, 1995a). It is known that large areas outside today’s shoreline were invaded by pine forests (Björck, 1995a).

Acknowledgements

Richard Gyllencreutz, Jan Lundqvist, Jan Mangerud, Bo Strömberg, Peter Vogt, and an anonymous reviewer provided valuable comments on the manuscript. Jakobsson acknowledge the support provided by the Swedish Royal Academy through a grant financed by the Knut and Alice Wallenberg foundation.

References

Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater outburst to the oceans from glacial Lake Agassiz and their role in climate change during last deglaciation. Quaternary Science Reviews 21, 879–887.
